E01SFF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

E01SFF evaluates at a given point the two-dimensional interpolating function computed by E01SEF.

2 Specification

```
SUBROUTINE E01SFF(M, X, Y, F, RNW, FNODES, PX, PY, PF, IFAIL) INTEGER M, IFAIL real \hspace{1cm} \texttt{X(M), Y(M), F(M), RNW, FNODES(5*M), PX, PY, PF}
```

3 Description

This routine takes as input the interpolant F(x,y) of a set of scattered data points (x_r, y_r, f_r) , for r = 1, 2, ..., m, as computed by E01SEF, and evaluates the interpolant at the point (px, py).

If (px, py) is equal to (x_r, y_r) for some value of r, the returned value will be equal to f_r .

If (px, py) is not equal to (x_r, y_r) for any r, all points that are within distance RNW of (px, py), along with the corresponding nodal functions given by FNODES, will be used to compute a value of the interpolant.

E01SFF must only be called after a call to E01SEF.

4 References

- [1] Franke R and Nielson G (1980) Smooth interpolation of large sets of scattered data *Internat. J. Num. Methods Engrg.* **15** 1691–1704
- [2] Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data *Proc. 23rd Nat. Conf. ACM* Brandon/Systems Press Inc., Princeton 517–523

Input

5 Parameters

M — INTEGER

		- · · · P · · · ·
2:	X(M) — $real$ array	Input
3:	Y(M) — $real$ array	Input
4:	F(M) — $real$ array	Input
5 :	$\mathrm{RNW}-real$	Input
6:	FNODES(5*M) - real array	Input
	On entry: M, X, Y, F, RNW and FNODES must be unchanged from the previous call of E01SEF.	
7:	$\mathrm{PX}-\mathit{real}$	Input
8:	$\mathrm{PY}-real$	Input
	On entry: the point (px, py) at which the interpolant is to be evaluated.	

9: PF-real

On exit: the value of the interpolant evaluated at the point (px, py).

10: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP3390/19/pdf] E01SFF.1

E01SFF E01 - Interpolation

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 3.

IFAIL = 2

The interpolant cannot be evaluated because the evaluation point (PX,PY) lies outside the support region of the data supplied in X, Y and F. This error exit will occur if (PX,PY) lies at a distance greater than or equal to RNW from every point given by arrays X and Y.

The value 0.0 is returned in PF. This value will not provide continuity with values obtained at other points (PX,PY), i.e., values obtained when IFAIL = 0 on exit.

7 Accuracy

Computational errors should be negligible in most practical situations.

8 Further Comments

The time taken for a call of E01SFF is approximately proportional to the number of data points, m.

The results returned by this routine are particularly suitable for applications such as graph plotting, producing a smooth surface from a number of scattered points.

9 Example

See the example for E01SEF.

E01SFF.2 (last) [NP3390/19/pdf]